



## **Description of Motion in** One Dimension



- Preeti reached the metro station and found that the escalator was not working. She walked up the stationary escalator in time  $t_i$ . On other days, if she remains stationary on the moving escalator, then the escalator takes her up in time  $t_{s}$ . The time taken by her to walk up on the moving escalator will be
  - (a)  $\frac{t_1t_2}{t_2-t_1}$
- (b)  $\frac{t_1t_2}{t_2+t_1}$
- (e)  $t_1 t_2$
- (d)  $\frac{t_1 + t_2}{2}$

(NEET 2017)

- 2. Two cars P and O start from a point at the same time in a straight line and their positions are represented by  $x_p(t) = (at + bt^2)$  and  $x_o(t) = (ft - t^2)$ . At what time do the cars have the same velocity?
  - (a)  $\frac{a-f}{1+b}$
- (b)  $\frac{a+f}{2(b-1)}$
- (c)  $\frac{a+f}{2(1+b)}$
- (d)  $\frac{f-a}{2(1+b)}$

- If the velocity of a particle is  $v = At + Bt^2$ , where A and B are constants, then the distance travelled by it between 1 s and 2 s is
  - (a)  $\frac{3}{2}A + \frac{7}{3}B$  (b)  $\frac{A}{2} + \frac{B}{3}$
  - (c)  $\frac{3}{2}A + 4B$  (d) 3.1 + 7B

(NEET-I 2016)

- A particle of unit mass undergoes onedimensional motion such that its velocity varies according to  $v(x) = \beta x^{-2n}$ , where  $\beta$  and nare constants and x is the position of the particle. The acceleration of the particle as a function of x, is given by
  - (a)  $-2\beta^2 x^{-2n+1}$
- (b)  $-2n\beta^2 e^{-4n-1}$ (d)  $-2n\beta^2 x^{-4n-1}$
- (c)  $-2n\beta^2 x^{-2n-1}$

(2015 Cancelled)

- A stone falls freely under gravity. It covers distances  $h_1$ ,  $h_2$  and  $h_3$  in the first 5 seconds, the next 5 seconds and the next 5 seconds respectively. The relation between  $h_1$ ,  $h_2$  and
  - (a)  $h_2 = 3h_1$  and  $h_3 = 3h_2$
  - (b)  $h_1 = h_2 = h_3$
  - (e)  $h_1 = 2h_2 = 3h_3$
  - (d)  $h_1 = \frac{h_2}{3} = \frac{h_3}{5}$

- 6. The displacement 'x' (in meter) of a particle of mass 'm' (in kg) moving in one dimension under the action of a force, is related to time 't' (in sec) by  $t = \sqrt{x+3}$ . The displacement of the particle when its velocity is zero, will be
  - (a) 4 m
- (b) 0 m (zero)
- (c)  $6 \, \mathrm{m}$
- (d) 2 m

(Karnataka NEET 2013)

- The motion of a particle along a straight line is described by equation  $x = 8 + 12t - t^3$  where x is in metre and t in second. The retardation of the particle when its velocity becomes zero is
  - (a)  $24 \text{ m s}^{-2}$
- (b) zero
- (c) 6 m s<sup>-2</sup>
- (d)  $12 \text{ m s}^{-2}$  (2012)
- A boy standing at the top of a tower of 20 m height drops a stone. Assuming  $g = 10 \text{ m/s}^2$ . the velocity with which it hits the ground is
  - (a) 10.0 m/s
- (b) 20.0 m/s
- (c) 40.0 m/s
- (d) 5.0 m/s (2011)
- A particle covers half of its total distance with speed  $v_1$  and the rest half distance with speed  $v_2$ . Its average speed during the complete journey is
  - (a)  $\frac{v_1 + v_2}{2}$
- (b)  $\frac{v_1v_2}{v_1+v_2}$
- (c)  $\frac{2v_1v_2}{v_1+v_2}$
- (d)  $\frac{v_1^2 v_2^2}{v_1^2 + v_2^2}$

(Mains 2011)



- 10. A particle moves a distance x in time t according to equation  $x = (t + 5)^{-1}$ . The acceleration of particle is proportional to
  - (a)  $(velocity)^{3/2}$
- (b) (distance)<sup>2</sup>
- (c) (distance)<sup>-2</sup>
- (d) (velocity)<sup>2/3</sup>

(2010)

- 11. A ball is dropped from a high rise platform at t = 0 starting from rest. After 6 seconds another ball is thrown downwards from the same platform with a speed v. The two balls meet at t = 18 s. What is the value of v?  $(\text{Take } g = 10 \text{ m/s}^2)$ 
  - (a) 75 m/s
- (b) 55 m/s
- (c) 40 m/s
- (d) 60 m/s (2010)
- 12. A particle starts its motion from rest under the action of a constant force. If the distance covered in first 10 seconds is  $S_1$  and that covered in the first 20 seconds is  $S_2$ , then
  - (a)  $S_2 = 3S_1$ (c)  $S_2 = S_1$

- (b)  $S_2 = 4S_1$ (d)  $S_2 = 2S_1$  (2009)
- 13. A bus is moving with a speed of 10 ms<sup>-1</sup> on a straight road. A scooterist wishes to overtake the bus in 100 s. If the bus is at a distance of 1 km from the scooterist, with what speed should the scooterist chase the bus?
  - (a)  $40 \text{ m s}^{-1}$
- (b)  $25 \text{ m s}^{-1}$
- (c)  $10 \text{ m s}^{-1}$
- (d) 20 m s<sup>-1</sup> (2009)
- 14. A particle moves in a straight line with a constant acceleration. It changes its velocity from 10 ms-1 to 20 ms-1 while passing through a distance 135 m in t second. The value of t is
  - (a) 12
- (b) 9
- (c) 10
- (d) 1.8

(2008)

- 15. The distance travelled by a particle starting from rest and moving with an acceleration
  - $\frac{4}{3}$  m s<sup>-2</sup>, in the third second is
  - (a)  $\frac{10}{3}$  m (b)  $\frac{19}{3}$  m
- (2008)
- 16. A particle moving along x-axis has acceleration f, at time t, given by
  - $f = f_0 \left( 1 \frac{t}{T} \right)$ , where  $f_0$  and T are constants.

The particle at t = 0 has zero velocity. In the time interval between t = 0 and the instant when f = 0, the particle's velocity  $(v_x)$  is

(a) 
$$\frac{1}{2}f_0T^2$$

- (b)  $f_0 T^2$
- (c)  $\frac{1}{2}f_0T$
- (2007)
- 17. A car moves from X to Y with a uniform speed  $v_n$  and returns to Y with a uniform speed  $v_d$ . The average speed for this round

  - (a)  $\sqrt{v_u v_d}$  (b)  $\frac{v_d v_u}{v_d + v_u}$

  - (c)  $\frac{v_u + v_d}{2}$  (d)  $\frac{2v_d v_u}{v_d + v_u}$ . (2007)
- 18. The position x of a particle with respect to time t along x-axis is given by  $x = 9t^2 - t^3$ where x is in metres and t in seconds. What will be the position of this particle when it achieves maximum speed along the x direction?
  - (a) 54 m
- (b) 81 m
- (c) 24 m
- (d) 32 m (2007)
- **19.** Two bodies A (of mass 1 kg) and B (of mass 3 kg) are dropped from heights of 16 m and 25 m, respectively. The ratio of the time taken by them to reach the ground is
  - (a) 4/5
- (b) 5/4
- (c) 12/5
- (d) 5/12. (2006)
- 20. A car runs at a constant speed on a circular track of radius 100 m, taking 62.8 seconds for every circular lap. The average velocity and average speed for each circular lap respectively is
  - (a) 10 m/s, 0
- (b) 0, 0
- (c) 0, 10 m/s
- (d) 10 m/s, 10 m/s.

(2006)

**21.** A particle moves along a straight line OX. At a time t (in seconds) the distance x (in metres) of the particle from O is given by  $x = 40 + 12t - t^3$ . How long would the particle travel before

- coming to rest? (a) 16 m
- (b) 24 m
- (c) 40 m
- (d) 56 m. (2006)
- 22. A ball is thrown vertically upward. It has a speed of 10 m/sec when it has reached one half of its maximum height. How high does the ball rise?

(Take  $g = 10 \text{ m/s}^2$ .)

- (a) 10 m
- (b) 5 m
- (c) 15 m
- (d) 20 m. (2005)



- 23. The displacement x of a particle varies with time t as  $x = ae^{-\alpha t} + be^{\beta t}$ , where a, b,  $\alpha$  and  $\beta$ are positive constants. The velocity of the particle will
  - (a) be independent of β
  - (b) drop to zero when  $\alpha = \beta$
  - (c) go on decreasing with time
  - (d) go on increasing with time. (2005)
- 24. A man throws balls with the same speed vertically upwards one after the other at an interval of 2 seconds. What should be the speed of the throw so that more than two balls are in the sky at any time? (Given  $g = 9.8 \text{ m/s}^2$ )
  - (a) more than 19.6 m/s (b) at least 9.8 m/s
  - (c) any speed less than 19.6 m/s
  - (d) only with speed 19.6 m/s.
- 25. If a ball is thrown vertically upwards with speed u, the distance covered during the last t seconds of its ascent is
  - (a) 111
- (b)  $\frac{1}{2}gt^2$
- (c)  $ut \frac{1}{2}gt^2$  (d) (u + gt) t. (2003)
- 26. A particle is thrown vertically upward. Its velocity at half of the height is 10 m/s, then the maximum height attained by it  $(g = 10 \text{ m/s}^2)$ 
  - (a) 8 m
- (b) 20 m
- (c) 10 m
- (d) 16 m (2001)
- 27. Motion of a particle is given by equation  $s = (3t^3 + 7t^2 + 14t + 8)$  m. The value of acceleration of the particle at t = 1 sec is
  - (a)  $10 \text{ m/s}^2$
- (b)  $32 \text{ m/s}^2$
- (c)  $23 \text{ m/s}^2$
- (d) 16 m/s<sup>2</sup>. (2000)
- 28. A car moving with a speed of 40 km/h can be stopped by applying brakes after at least 2 m. If the same car is moving with a speed of 80 km/h, what is the minimum stopping distance?
  - (a) 4 m
- (b) 6 m
- (c) 8 m
- (d) 2 m. (1998)
- 29. A rubber ball is dropped from a height of 5 m on a plane. On bouncing it rises to 1.8 m. The ball loses its velocity on bouncing by a factor of
- (a)  $\frac{3}{5}$  (b)  $\frac{2}{5}$  (c)  $\frac{16}{25}$  (d)  $\frac{9}{25}$
- **30.** The position x of a particle varies with time, (t) as  $x = at^2 - bt^3$ . The acceleration will be zero at time t is equal to

- (b) zero (c)  $\frac{2a}{3b}$  (d)  $\frac{a}{b}$ .
- 31. If a car at rest accelerates uniformly to a speed of 144 km/h in 20 sec, it covers a distance of
  - (a) 1440 cm
- (b) 2980 cm
- (c) 20 m
- (d) 400 m. (1997)
- **32.** A body dropped from a height h with initial velocity zero, strikes the ground with a velocity 3 m/s. Another body of same mass dropped from the same height h with an initial velocity of 4 m/s. The final velocity of second mass, with which it strikes the ground is
  - (a) 5 m/s
- (b) 12 m/s
- (c) 3 m/s
- (d) 4 m/s. (1996)
- The acceleration of a particle is increasing linearly with time t as bt. The particle starts from origin with an initial velocity  $v_0$ . The distance travelled by the particle in time t will be

  - (a)  $v_0 t + \frac{1}{3}bt^2$  (b)  $v_0 t + \frac{1}{2}bt^2$
  - (e)  $v_0 t + \frac{1}{6} b t^3$  (d)  $v_0 t + \frac{1}{3} b t^3$ .

(1995)

- 34. The water drop falls at regular intervals from a tap 5 m above the ground. The third drop is leaving the tap at instant the first drop touches the ground. How far above the ground is the second drop at that instant?
  - (a) 3.75 m
- (b) 4.00 m
- 1.25 m (c)
- (d) 2.50 m. (1995)
- 35. A car accelerates from rest at a constant rate a for some time after which it decelerates at a constant rate \( \beta \) and comes to rest. If total time elapsed is t, then maximum velocity acquired by car will be
  - (a)  $\frac{\left(\alpha^2 \beta^2\right)t}{\alpha\beta}$  (b)  $\frac{\left(\alpha^2 + \beta^2\right)t}{\alpha\beta}$

  - (c)  $\frac{(\alpha+\beta)t}{\alpha\beta}$  (d)  $\frac{\alpha\beta t}{\alpha+\beta}$ . (1994)
- **36.** A particle moves along a straight line such that its displacement at any time t is given by  $s = (t^3 - 6t^2 + 3t + 4)$  metres. The velocity when the acceleration is zero is
  - (a) 3 m/s
- (b) 42 m/s
- (c) -9 m/s
- (d) -15 m/s. (1994)



- 37. The velocity of train increases uniformly from 20 km/h to 60 km/h in 4 hours. The distance travelled by the train during this period is
  - (a) 160 km
- (b) 180 km
- (c) 100 km
- (d) 120 km. (1994)
- 38. The displacement-time graph of a moving particle is shown below. The instantaneous velocity of the particle is negative at the point



- 39. A body starts from rest, what is the ratio of the distance travelled by the during the 4th and 3rd second?

- (1993)
- 40. Which of the following curve does not represent motion in one dimension?



**41.** A body dropped from top of a tower fall through 40 m during the last two seconds of

- its fall. The height of tower is  $(g = 10 \text{ m/s}^2)$
- (a) 60 m
- (b) 45 m
- (c) 80 m
- (d) 50 m.

(1992)

- **42.** A car moves a distance of 200 m. It covers the first half of the distance at speed 40 km/ h and the second half of distance at speed v. The average speed is 48 km/h. The value of v is
  - (a) 56 km/h
- (b) 60 km/h
- (c) 50 km/h
- (d) 48 km/h.

(1991)

- 43. A bus travelling the first one-third distance at a speed of 10 km/h, the next one-third at 20 km/h and at last one-third at 60 km/h. The average speed of the bus is
  - (a) 9 km/h
- (b) 16 km/h
- (c) 18 km/h
- (d) 48 km/h.

(1991)

- 44. A car covers the first half of the distance between two places at 40 km/h and another half at 60 km/h. The average speed of the car is
  - (a) 40 km/h
- (b) 48 km/h
- (e) 50 km/h
- (d) 60 km/h

(1990)

- 45. What will be the ratio of the distance moved by a freely falling body from rest in 4th and 5th seconds of journey?
  - (a) 4:5
- (b) 7:9
- (c) 16:25
- (d) 1:1.

(1989)

- 46. A car is moving along a straight road with a uniform acceleration. It passes through two points P and O separated by a distance with velocity 30 km/h and 40 km/h respectively. The velocity of the car midway between P and O 18
  - 33.3 km/h (a)
- (b)  $20\sqrt{2} \text{ km/h}$
- $25\sqrt{2}$  km/h
- (d) 35 km/h.

(1988)